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Abstract. The basic physical processes in laser-matter interaction, up to 1017 W/cm2 (for a neodymium
laser) are now well understood, on the other hand, new phenomena evidenced in PIC code simulations
have to be investigated above 1018 W/cm2. Thus, the relativistic motion of a charged particle in a linearly
polarized homogeneous electromagnetic wave is studied, here, using the Hamiltonian formalism. First,
the motion of a single particle in a linearly polarized traveling wave propagating in a non-magnetized
space is explored. The problem is shown to be integrable. The results obtained are compared to those
derived considering a cold electron plasma model. When the phase velocity is close to c, it is shown that
the two approaches are in good agreement during a finite time. After this short time, when the plasma
response is taken into account no chaos take place at least when considering low densities and/or high wave
intensities. The case of a charged particle in a traveling wave propagating along a constant homogeneous
magnetic field is then considered. The problem is shown to be integrable when the wave propagates in
vacuum. The existence of a synchronous solution is shown very simply. In the case when the wave propagates
in a low density plasma, using a simplifying Lorentz transformation, it is shown that the system can be
reduced to a time-dependent system with two degrees of freedom. The system is shown to be nonintegrable,
chaos appears when a secondary resonance and a primary resonance overlap. Finally, stochastic instabilities
are studied by considering the motion of one particle in a very high intensity wave perturbed by one or two
low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied.

PACS. 52.38.Kd Laser-plasma acceleration of electrons and ions – 02.50.Ey Stochastic processes

1 Introduction

A large number of issues remain open in the study
of laser-matter interaction at very high intensities. Re-
cently, particle-in-cell (PIC) code simulations published
by Tajima, Kishimoto, and Masaki have shown that the
irradiation of very high intensity lasers on clustered mat-
ter leads to a very efficient heating of electrons [1,2]. They
show that chaos seems to be the origin of the strong laser
coupling with clusters. More recently, it was confirmed in
PIC code simulations, in the case of two counterpropa-
gating laser pulses, that stochastic heating can lead to an
efficient acceleration of electrons [3,4]. Consequently, we
started to explore situations, where electron trajectories
become chaotic and how chaos can play an important part
in laser-matter interaction at very high intensities. There-
fore, the issue that we will address below is the stability
of electron motion in the fields of the wave.
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This paper is devoted to situations when the intensity
of the wave is very high and/or when the plasma has a very
low density compared to the non-relativistic critical den-
sity. A large part of this paper concerns situations when
the polarization current is small compared to the displace-
ment current 1/c2 (∂E/∂t) � µ0nev [5]. During a short
time, it can be considered that the electromagnetic wave
propagates in vacuum. After this short time the plasma
response has to be taken into account and can be treated
as a perturbation. In most situations investigated in this
paper, the dynamics of an electron alone in the wave will
be studied first, and then the effect of the plasma response
will be explored. As the PIC code simulations results pre-
viously published evidence a stochastic electron heating,
due to a plane wave effect, the plane wave approximation
is used. Nethertheless, the ponderomotive effects are not
ignored in the sense that they contribute to make the wave
interact with a low-density plasma.

At very high intensities the motion of a charged parti-
cle in a wave is highly non-linear. The situations when the
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motion is integrable are exceptional. The solutions corre-
sponding to these situations deserve to be studied because
they are strong as predicted by KAM theorem [6–11].
Moreover, they are useful to predict resonances when a
perturbing wave is considered.

The paper is organized as follows: in Section 2, the
dynamics of one particle in a linearly polarized traveling
wave propagating in a nonmagnetized medium is studied;
a certain number of results obtained previously are re-
called. They are necessary to make the paper easy to read.
First, the medium is assumed to be vacuum. The Liouville
integrability of the motion is demonstrated [6–10,12,13].
Using a canonical transformation eliminates time; the new
system is shown to be completely integrable. This demon-
strates that trajectories are on a torus and that the state
of the system can be expressed in terms of canonical
action-angle variables [6–10,14]. Solving Hamilton-Jacobi
equation also proves integrability. It is shown that the
charged particle can have a high average velocity along the
direction of propagation of the wave and along its electric
field. These results are used to compare this one parti-
cle model to a plasma approach. Indeed, it is shown that
a strong linearly polarized electromagnetic wave propa-
gating in cold electron plasma, can generate a constant
electron current along its direction of propagation during
a short time. This time grows as the phase velocity of the
wave becomes closer to the speed of light [15]. The results
obtained with the two approaches are in good agreement
during the short time. After this time, the plasma response
has to be taken into account. It is shown that, even then,
the motion of one particle of the plasma remains integrable
in the limit of low densities.

The dynamics of a charged particle in a linearly polar-
ized electromagnetic wave propagating along a constant
homogeneous magnetic field is studied next in Section 3.
In a first part the electromagnetic wave is assumed to
propagate in vacuum. Roberts and Buchsbaum have al-
ready explored this problem in the case of a circularly
polarized wave [16]. They found a “synchronous” solution
in which the particle gains energy indefinitely. It is shown
that the synchronous solution still exists when the wave is
linearly polarized [15,17,18]. One of the constants of mo-
tion appears in the resonance condition [19], this means
that when a particle is initially resonant it remains reso-
nant forever. Two constants, which are canonically conju-
gate, are found. This property is used to reduce the ini-
tially three degrees of freedom problem to a two degree of
freedom problem. The system is integrated and is shown
to be Liouville integrable. An asymptotic solution for the
energy, and consequently all of the variables of the system,
is found.

Then, in order to study the plasma response in the case
of a very high intensity wave propagating in a low-density
plasma, an approximate solution for an almost transverse
wave is used. It is shown that for moderate values of the
constant magnetic fields one can consider that this wave
has approximately the same form as the one, which prop-
agates, in vacuum. Performing a Lorentz transformation
eliminates the space variable corresponding to the direc-

tion of propagation of the wave. Just like in the previ-
ous case, two canonically conjugate constants are used to
reduce the initially three degrees of freedom problem to
a two degrees of freedom problem. Thus, Poincaré maps
are performed. Lyapunov exponents are also calculated to
confirm the chaotic nature of some trajectories [9,10,20].
Chaos appears when a secondary resonance and a primary
resonance overlap. Consequently, the system is not inte-
grable and chaos appears as soon as the plasma response
is taken into account. The overlap of the two resonances
can generate some stochastic heating. Still, more stochas-
tic heating should be generated when many resonances can
overlap, such a situation can be achieved when perturbing
the high intensity wave by a low intensity electromagnetic
traveling plane wave. This is discussed in the next section.

In Section 4, the stability of a charged particle in
the fields of many waves is explored. In this part no
constant homogeneous magnetic field will be taken into
account. A high intensity plane wave will be first per-
turbed by one or two electromagnetic plane waves. Then,
a perturbing plasma wave is considered. The solution of
Hamilton-Jacobi equation derived in Section 2 is used to
identify resonances. The Chirikov criterion [21] is applied
to two resonances corresponding to two symmetric per-
turbing waves. In this case, the particle trajectory is as-
sumed not to be affected by the plasma response, as the
medium is not magnetized. In the case of a plasma wave,
the effect of one or two perturbing modes is investigated.
Above the Chirikov threshold, computing single particle
trajectories with their initial conditions in the overlapping
region, calculating their energy evidences stochastic heat-
ing. In each situation, the Chirikov criterion is applied to
the two most dangerous resonances.

2 Dynamics of a charged particle
in an electromagnetic linearly polarized
traveling wave

2.1 The wave propagates in vacuum

2.1.1 Hamiltonian formulation of the problem. Integrability
of the system

Let us consider a charged particle in an electromagnetic
plane wave propagating along the z-direction (the wave
vector k0 is parallel to the z-direction). The following
4-potential is chosen

[φ,A] =
[
0,
E0

ω0
cos (ω0t− k0z) êx

]
, (1)

where E0, ω0, and k0 are constants.
When time t is treated as a parameter entirely distinct

from the spatial coordinates, the relativistic Hamiltonian
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for a charged particle in the wave is in mks units

H =

[[
Px +

eE0

ω0
cos (ω0t− k0z)

]2
c2

+ P 2
y c

2 + P 2
z c

2 +m2c4

]1/2

, (2)

where −e,m, and Pi(i = x, y, z) are respectively the par-
ticle’s charge, its rest mass and its canonical momentum
components. This system has three degrees of freedom.
We next introduce the following dimensionless variables
and parameter

ẑ = k0z, P̂x,y,z =
Px,y,z

mc
, t̂ = ω0t,

Ĥ = γ =
H

mc2
, a =

eE0

mcω0
, (3)

and perform the canonical transformation, (ẑ, P̂z) →
(ζ, P̂z), given by the type-2 generating function [6–10,15,
17]

F2

(
ẑ, P̂z

)
= P̂z

(
ẑ − t̂

)
. (4)

This canonical transformation keeps P̂z unchanged and
yields

ζ = ẑ − t̂. (5)

The Hamiltonian expressed in terms of the new variables is

Ĥ = Ĉ =
[(
P̂x + a cos ζ

)2

+ P̂ 2
y + P̂ 2

z + 1
]1/2

− P̂z. (6)

This Hamiltonian (we have also called it Ĉ as this con-
stant of motion which is associated to the plane wave
symmetry will be named this way further), P̂x and P̂y

are three constants of motion, which are independent and
in involution. As a consequence the system is completely
integrable [6–10].

2.1.2 Integration of the Hamilton-Jacobi equation

When using the proper time of the particle to parametrize
the motion in the extended phase space, the Hamiltonian
of the charged particle in the wave reads [22]

H =
1
2
mc2γ2 − 1

2m
(P + eA)2 − 1

2
mc2. (7)

When the dimensionless variables and parameter defined
by equations (3) are used again, a normalized proper
time: τ̂ = ω0τ is also introduced. Then the normalized
Hamiltonian reads

Ĥ =
1
2
γ2 − 1

2

(
P̂ + a

)2

− 1
2
. (8)

Although the electron motion is not restricted to the
plane of polarization of the wave (the y degree of free-
dom is assumed to be excited), we look for a set

of actions (P⊥, P‖, E) and angles (θ, ϕ, φ), instead of
the configuration (r, t), and momentum, (P,−γ) in the
(x̂, ẑ, t̂ P̂x, P̂z ,−γ) phase space. This comes out to say that
we seek a canonical transformation (x̂, ẑ, t̂, P̂x, P̂z,−γ) →
(θ, ϕ, φ, P‖, P⊥, E), such that the new momenta are con-
stants of motion. Following Landau and Lifshitz [23], the
following type-2 generating function is obtained [24]

F̂2

(
P⊥, P‖, E, x̂, ẑ, t̂

)
= P‖ẑ + P⊥x̂− Et̂

+
P⊥a
P‖ − E

sin
(
t̂− ẑ

)
+

a2

8P‖ − 8E
sin 2

(
t̂− ẑ

)
. (9)

The old configuration variables expressed in terms of the
new ones are given by

p̂x = P⊥ + a cos(φ+ ϕ),

p̂z = P‖ − P⊥a
P‖ − E

cos(φ+ ϕ) − a2

4
(
P‖ − E

) cos 2(φ+ ϕ),

γ = E − P⊥a
P‖ − E

cos(φ + ϕ) − a2

4
(
P‖ − E

) cos 2(φ+ ϕ),

x̂ = θ +
a

P‖ − E
sin(φ+ ϕ),

ẑ=ϕ− P⊥a(
P‖ − E

)2 sin(φ+ ϕ) − a2

8
(
P‖ − E

)2 sin 2(φ+ ϕ),

t̂=−φ− P⊥a(
P‖−E

)2 sin(φ+ϕ)− a2

8
(
P‖−E

)2 sin 2(φ+ϕ),

(10)

where p̂x and p̂z are components of the normalized mo-
mentum of the charged particle. It is straightforward to
check that, P⊥ = 〈p̂x〉, P‖ = 〈p̂z〉, E = 〈γ〉, and Ĉ =
E − P‖. All the former constants of motion are found
again. A term corresponding to the identity transforma-
tion in the (ŷ, P̂y) plane, could have been added to the
generating function (9). The new Hamiltonian in terms of
the action variables reads [24]

H̃0

(
P‖, P⊥, P̂y, E

)
= −1

2

(
M2 + P 2

‖ + P 2
⊥ + P̂ 2

y − E2
)
,

(11)
where M2 = 1 + a2/2. As H̃0 = 0, the energy momentum
dispersion relation is given by

E
(
P⊥, P̂y, P‖, a

)
=
√
M2 + P 2

⊥ + P̂ 2
y + P 2

‖ . (12)

The solution of Hamilton equations is

θ = −P⊥τ̂ , ŷ = −P̂y τ̂ , ϕ = −P‖τ̂ , φ = Eτ̂ . (13)

Finding the solution of Hamilton-Jacobi equation is an-
other way to prove that the problem is integrable. This
solution is also very useful to predict resonances when a
perturbing mode is considered.
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2.2 The wave propagates in a cold relativistic electron
plasma

We now show that the theory of propagation of a strong
electromagnetic wave in a cold, low density, electron
plasma, allows finding many of the results previously
found considering one particle only. The good agreement
between the two approaches last a finite time only. This
time grows with the intensity of the wave and when the
plasma density decreases. For instance, we are going to
show that, during the finite time, a strong linearly po-
larized electromagnetic wave generates a constant current
along its propagation direction when propagating in cold
electron plasma with a phase velocity very close to the
speed of light.

Following Akhiezer and Polovin [25] the propagation
of a relativistically strong wave in a cold relativistic elec-
tron plasma is described with Maxwell and Lorentz equa-
tions. All the variables entering into these equations are
assumed not to be functions of space and time separately,
but only of the combination i ·r−V t, where i is a constant
unit vector, and V a constant. The meaning of this type
of solution is that it represents plane waves traveling in
the direction i with speed V . It is assumed that v and p
are respectively the velocity and mechanical momentum
of the electrons, n is their density and N0 is the one of
ions. Combining Lorentz and Maxwell equations and in-
troducing the following variables

p̂ =
p
mc

, v̂ =
v
c
, τ = t− i · r

V
, ω2

p =
e2N0

ε0m
. (14)

Letting θ = ωp

(
β2 − 1

)−1/2
τ , lead to the wave equations.

In the absence of the external magnetic field B0, the fol-
lowing equations for the electron motion are found after
some algebra [25]

d2p̂x

dθ2
+

β3p̂x

β
√

1 + p̂2 − p̂z

= 0, (15a)

d2p̂y

dθ2
+

β3p̂y

β
√

1 + p̂2 − p̂z

= 0, (15b)

d2

dθ2

(
βp̂z −

√
1 + p̂2

)
+

β2
(
β2 − 1

)
p̂z

β
√

1 + p̂2 − p̂z

= 0. (15c)

where β = V/c.
Neglecting the last term in the third equation

(Eq. (15c)) when the phase velocity is close to the speed
of light, i.e. β ≈ 1, we find

Ĉ = α2 =
√

1 + p̂2 − p̂z, (16)

where Ĉ is the invariant already found in the one particle
Hamiltonian approach (Eq. (6)).

By solving numerically equations (15), we have shown
that there is a good agreement between the values calcu-
lated considering one particle only or a plasma during a
finite time. This time increases when the intensity of the
wave grows and when the density of the plasma decreases.

Fig. 1. Evolution of Ĉ for different values of a when ω2
p/ω2

0 =
10−3. (a) a = 100, (b) a = 10, (c) a = 1.

Figure 1 shows the evolution of Ĉ versus time for a given
low density, it shows that Ĉ is all the more a constant as
the wave intensity is higher.

Considering that the electron motion is in the x− z-
plane (p̂y = 0), assuming that β ≈ 1 and p̂x = p̂x0

when θ = 0, an approximate solution of equations (15a,
15b) is given by

p̂x = p̂x0 cos
θ

α
, (17a)

p̂y = 0. (17b)

Substituting these equations into (16), we find

p̂z =
1

4α2

[
p̂2

x0 − 2
(
α4 − 1

)
+ p̂2

x0 cos
2θ
α

]
. (17c)

Still considering a wave that propagates in the x−z plane,
two ways of determining the constant Ĉ (or α2) can be
chosen. The first way consists in assuming that Ĉ is a
real constant of motion that is determined with the ini-
tial conditions. The second way consists in assuming that
the average current in the direction of propagation of the
wave vanishes [25]. The first way to determine Ĉ leads to a
solution that is accurate at very low densities and during
a short time only. Moreover, during this short time, the
average velocity along the direction of propagation of the
wave is almost the same as the one calculated with the
one particle model. The second way to determine Ĉ gives
a more accurate solution when considering long times and
higher densities. The two solutions found this way for Ez

show that the wave become transverse as the density goes
to zero. In the two cases, the dynamics of an electron that
is not a part of the background distribution can also be
studied. Px, Py and C = H−V Pz are still three constants
independent and in involution. As a consequence the sys-
tem is integrable. We can conclude that, in a low-density
plasma, when considering waves polarized in a plane, only
an almost linearly polarized wave can propagate; a small
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Ez component has to be added to the electric field of the
wave which propagates in vacuum. This component (Ez)
does not generate chaos and no stochastic heating can take
place.

3 Dynamics of a charged particle in a linearly
polarized electromagnetic traveling wave
propagating along a constant homogeneous
magnetic field

3.1 The wave is assumed to propagate in vacuum

3.1.1 Hamiltonian structure of the problem

The constant magnetic field B0 is supposed to be along
the z-axis. The traveling wave is assumed to be linearly
polarized. It has a propagation vector k0 parallel to B0.
The following vector potential is chosen for the electro-
magnetic field

A =
[
−B0

2
y +

E0

ω0
cos (ω0t− k0z)

]
êx+
(
B0

2
x

)
êy. (18)

The scalar potential is assumed to vanish. The relativistic
Hamiltonian for the motion is

H =

[(
Px +

eE0

ω0
cos (ω0t− k0z) − eB0

2
y

)2

c2

+
(
Py +

eB0

2
x

)2

c2 + P 2
z c

2 +m2c4

] 1
2

. (19)

This is a time-dependent system with three degrees of free-
dom. It can be easily checked that C = H − (ω0/k0)Pz is
still a constant of motion for this system. Combining the
equations of Hamilton allows us to find easily two con-
stants of motion

C1 = Px +
eB0

2
y, C2 = Py − eB0

2
x. (20)

These two constants are such that
[
C1,

C2

eB0

]
= 1. (21)

The three constants that we have just found are not in
involution and, at this stage, one cannot conclude that
the problem is integrable.

The normalized equations of motion are obtained by
introducing new normalized variables x̂ = k0x, ŷ = k0y,
and normalized parameter Ω0 = eB0/mω0 to those al-
ready defined by (3). The following two normalized con-
stants are also introduced, Ĉ1 = C1/mc and Ĉ2 = C2/mc.

3.1.2 Integrability of the problem

The canonical transformation ζ = ẑ − t̂, defined by the
generating function (4) is performed first. The normalized
Hamiltonian is given by

H =

[(
P̂x + a cos ζ − Ω0

2
ŷ

)2

+
(
P̂y +

Ω0

2
x̂

)2

+ P̂ 2
z + 1

]1/2

− P̂z . (22)

The fact that the two constants Ĉ1 and Ĉ2/Ω0 are canon-
ically conjugate is used now to reduce the system. To do
so, a canonical transformation, which is the product of
two canonical transformations, defined by the following
type-2 generating functions: F2 = [P̃x − (Ω0/2)ŷ]x̂ + P̃y ŷ
and F2 = (P2 +Ω0x̃)ỹ + P1(x̃ + P2/Ω0), given by

x̂ = Q1 − P2

Ω0
, ŷ = Q2 − P1

Ω0
,

P̂x =
1
2

(Ω0Q2 + P1) , P̂y =
1
2

(Ω0Q1 + P2) , (23)

is performed [17,26]. In terms of the new variables, the
Hamiltonian is

H = Ĉ =
[
(P1 + a cos ζ)2 +Ω2

0Q
2
1 + P̂ 2

z + 1
]1/2

− P̂z .

(24)
The equations of Hamilton are

Ṗ1 = −Ω
2
0

γ
Q1, Q̇1 =

1
γ

(P1 + a cos ζ) ,

˙̂
P z =

a

γ
sin ζ (P1 + a cos ζ) , ζ̇ =

P̂z

γ
− 1. (25)

The equation of Hamilton for ζ (Eqs. (25)), can be put in
the form

γ
dζ

dt̂
= −Ĉ. (26)

As a consequence, indicating differentiation with respect
to ζ by a prime in this paragraph, we can write

A′ =
dA

dζ
=
dA/dt̂

dζ/dt̂
, (27)

which implies that Ȧ = −A′Ĉ/γ. Thus, the equations of
Hamilton (Eqs. (25)) become

P ′
1Ĉ = Ω2

0Q1, (28a)

Q′
1Ĉ = − (P1 + a cos ζ) , (28b)

P ′
zĈ = −a sin ζ (P1 + a cos ζ) , (28c)

Ĉ = γ − Pz. (28d)

Differentiating a second time the second equation leads to
the following equations of motion for Q1

Q′′
1 +

Ω2
0

Ĉ2
Q1 =

a

Ĉ
sin ζ. (29a)
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The following equation for P1, is obtained in the same way

P ′′
1 +

Ω2
0

Ĉ2
P1 = −Ω

2
0

Ĉ2
a cos ζ. (29b)

One has a resonance when Ω2
0 = Ĉ2. These equations can

be easily solved analytically when the resonance condition
is satisfied and when it is not. Then equation (28c) is used
to determine Pz and γ is obtained through equation (28d).
The Lorentz factor is given by: γ = Ω0 + Pz

γ = Ω0 +
a2

8Ω0
ζ2 − aĀ

2
sin ϕ̄ζ +

a2

8Ω0
ζ sin 2ζ

+
3a2

16Ω0
cos 2ζ +

aĀ

4
sin
(
2ζ + β̄

)
+ Λ̄, (30)

where Ā, Λ̄, ϕ̄ and β̄ are arbitrary constants which can be
obtained from the initial conditions. Let us point out that
when ζ is large enough, γ has the following asymptotic
expression

γ ≈ a2

8Ω0
ζ2. (31)

We have verified that the solution found this way is the
same as the one found by Ondarza-Rovira [27].

As we have shown that the system can be integrated
when the wave is assumed to propagate in vacuum, no
chaos can take place and consequently trajectories are all
regular.

Integrability can also be demonstrated by using
Liouville’s theorem. Another constant was found and used
to test our numerical calculations (Appendix A).

3.2 The wave propagates in a cold electron plasma

In this part the influence of the plasma is taken into ac-
count. The wave is still assumed to propagate along a
constant homogeneous magnetic field B0.

The equations describing non-linear waves propagat-
ing along a constant magnetic field in a relativistic elec-
tron plasma (Eqs. (15)) have to be replaced by the follow-
ing [25]

d2p̂x

dθ2
+

β3p̂x

β
√

1 + p̂2 − p̂z

=

β
√

(β2 − 1)Ωp
d

dθ

(
p̂y

β
√

1 + p̂2 − p̂z

)
, (32a)

d2p̂y

dθ2
+

β3p̂y

β
√

1 + p̂2 − p̂z

=

− β
√

(β2 − 1)Ωp
d

dθ

(
p̂x

β
√

1 + p̂2 − p̂z

)
, (32b)

d2

dθ2

(
βp̂z −

√
1 + p̂2

)
+

β2
(
β2 − 1

)
p̂z

β
√

1 + p̂2 − p̂z

= 0, (32c)

where Ωp = eB0/mωp.

Assuming that the index of refraction of the medium
is close to unity, equation (32c) still shows that, Ĉ = α2 =√

1 + p̂2 − p̂z, is a constant. The first two equations (32)
then take the form

d2p̂x

dθ2
+
p̂x

α2
=
√

(β2 − 1)
Ωp

α2

dp̂y

dθ
, (33a)

d2p̂y

dθ2
+
p̂y

α2
= −
√

(β2 − 1)
Ωp

α2

dp̂x

dθ
. (33b)

Introducing the following complex quantity Z = p̂x + ip̂y,
these two equations are equivalent to the following

d2Z

dθ2
+ i

λ

α2

dZ

dθ
+

1
α2
Z = 0, (34)

where λ = Ωp

√
β2 − 1. The solution reads

Z = Λ1 exp i

[(√
λ2/α2 + 4

2α
− λ

2α2

)
θ + ϕ1

]

+ Λ2 exp−i
[(√

λ2/α2 + 4
2α

+
λ

2α2

)
θ − ϕ2

]
, (35)

where Λ1, Λ2, ϕ1 and ϕ2 are real constants which depend
on the initial conditions.

Here again, it has been shown that, during a short
time, the electrons of a plasma behave as if they were
alone in the wave.

Looking for an approximate solution valid after a long
time (a time longer than a plasma period), we assume that
the average current along the z-axis vanishes, this implies
that

α2 =
√

1 + Λ2
1 + Λ2

2. (36)

Finally, using equation (35) and Ĉ, we obtain

p̂x = Λ1 cos (ω1τ + ϕ1) + Λ2 cos (ω2τ − ϕ2) , (37a)
p̂y = Λ1 sin (ω1τ + ϕ1) − Λ2 sin (ω2τ − ϕ2) , (37b)

p̂z =
Λ1Λ2√

1 + Λ2
1 + Λ2

2

cos [(ω1 + ω2) τ + ϕ2 − ϕ1] , (37c)

where

ω1 =


√
Ω2

p(β2−1)√
1+Λ2

1+Λ2
2

+ 4

2 (1 + Λ2
1 + Λ2

2)
1/4

− Ωp

√
β2 − 1

2
√

1 + Λ2
1 + Λ2

2


ωp

(
β2 − 1

)−1/2
,

(38a)

and

ω2 =


√
Ω2

p(β2−1)√
1+Λ2

1+Λ2
2

+ 4

2 (1 + Λ2
1 + Λ2

2)
1/4

+
Ωp

√
β2 − 1

2
√

1 + Λ2
1 + Λ2

2


ωp

(
β2 − 1

)−1/2
.

(38b)
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For low densities and weak magnetic fields, when
4
√

1 + Λ2
1 + Λ2

2/Ω
2
p(β2 − 1) � 1 (we assume that Ωp re-

mains close to unity when β − 1 goes to zero), ω1 goes
to ω2 and the solution that we have just found describes
an almost monochromatic wave. When Λ1 = Λ2, this wave
is also almost linearly polarized.

In this limit (β ≈ 1), let us consider a test particle,
which interacts with the fields of the wave without be-
longing to the main electron distribution. Thus, the wave
vector potential has a form which can be approached by
equations (18) where ω0 ≈ ω1 ≈ ω2. Just like before, di-
mensionless variables and parameters are used. The nor-
malized Hamiltonian of the system expressed in terms of
the dimensionless variables and parameters is

Ĥ = n

[(
P̂x + a cos

(
t̂− ẑ

)− Ω0

2n
ŷ

)2

+
(
P̂y +

Ω0

2n
x̂

)2

+ P̂ 2
z + 1

]1/2

. (39)

The Hamilton equations allow us to readily find two con-
stants of motion

Ĉ1 = P̂x +
Ω0

2n
ŷ,

Ĉ2 = P̂y − Ω0

2n
x̂. (40)

It can be noted that the two constants Ĉ1 and nĈ2/Ω0 are
canonically conjugate. Ĉ = Ĥ−P̂z is still a constant of mo-
tion. These three constants of motion are not in involution
and one cannot conclude that the problem is integrable.

We have solved the equations of Hamilton numerically.
When the wave propagates in a medium with an index of
refraction inferior to unity (n < 1), the trajectories spiral
outward and inward just as in the non resonant case when
the wave propagates in vacuum.

3.2.1 Introduction of a simplifying Lorentz transformation

A new frame (L∗) which moves uniformly along the z-axis
with velocity U relative to the laboratory frame is intro-
duced. The Lorentz transformation of the 4-momentum is
given by [22,23]

P ′
x = Px, P ′

y = Py, P ′
z = Γ

(
Pz − U

c2
E

)
,

E′ = Γ (E − UPz) , (41)

where Γ = (1 − U2/c2)−1/2, and E = γmc2 is the energy
of the charged particle.

In the extended phase space, where time is treated
on a common basis with other coordinates, a fully co-
variant Hamiltonian formulation of the problem can be
constructed. In this space, the Lorentz transformation de-
fined above is identical to the canonical transformation

generated by the following type-2 generating function

F2

(
x, y, z, t, P ′

x, P
′
y, P

′
z , E

′) = P ′
xx+ P ′

yy

+ Γ

(
P ′

z +
U

c2
E′
)
z − Γ (E′ + UP ′

z) t. (42)

As a consequence, if the problem is integrable in the
frame (L∗), it is also integrable in the laboratory frame.

The phase of the wave which is an invariant takes, in
the moving frame, the following form [22]

ω0t− k0z = Γ

[
ω0

(
t′ +

U

c2
z′
)
− k0 (z′ + Ut′)

]
. (43)

When the phase velocity of the wave is greater than the
speed of light, there exists one special frame (L∗) in which
the phase does not depend on the variable z′. This frame
can be defined by its drift velocity [28]

U

c
=
k0c

ω0
= n. (44)

In (L∗), the vector potential is [22]

A =
(
−B0

2
y′ +

E′
0

ω′
0

cosω′
0t

′
)

ê′x +
(
B0

2
x′
)

ê′y. (45)

Within the new frame (L∗), the equations of motion are
generated by the following Hamiltonian

H ′ =

[(
P ′

x +
eE′

0

ω′
0

cosω′
0t

′ − eB0

2
y′
)2

c2

+
(
P ′

y +
eB0

2
x′
)2

c2 + P ′
zc

2 +m2c4

]1/2

. (46)

Let us now introduce the following dimensionless variables
and parameters

x̂′=
ω′

0

c
x′, ŷ′=

ω′
0

c
y′, ẑ′=

ω′
0

c
z′, t̂ ′=ω′

0t
′, P̂ ′

x,y,z =
P̂ ′

x,y,z

mc
,

Ω′
0 =

eB0

mω′
0

, a′ =
eE′

0

mcω′
0

, Ĥ ′ = γ′ =
H ′

mc2
. (47)

The following normalized Hamiltonian

Ĥ ′ =

[(
P̂ ′

x + a′ cos t̂ ′ − Ω′
0

2
ŷ′
)2

+
(
P̂ ′

y +
Ω′

0

2
x̂′
)2

+ P̂ ′2
z + 1

]1/2

, (48)

leads to the normalized equations of motion.
Dropping the primes for convenience, it can be shown

very easily that this system has three constants of motion

Ĉ1 = P̂x +
Ω0

2
ŷ, Ĉ2 = P̂y − Ω0

2
x̂, Ĉ = P̂z . (49)

The first two constants (Ĉ1 and Ĉ2/Ω0) are canonically
conjugate.



368 The European Physical Journal D

3.2.2 Reduction to a two-dimensional problem in the new
frame

Let us reduce the system in order to perform Poincaré
maps. To do so, let us choose the two constants Ĉ1 and Ĉ2

as new momentum and coordinate conjugate. The canoni-
cal transformation defined by equations (23) is performed.
The new Hamiltonian is

H =
[(
P1 + a cos t̂

)2
+Ω2

0Q
2
1 + P̂ 2

z + 1
]1/2

. (50)

This is a time-dependent system with only two degrees
of freedom. As P̂z is an obvious first integral, one can
evacuate the conjugate variable ẑ and say, even if it is
not academic, that we have a time-dependent system with
one degree of freedom.

Let us perform now the following canonical transfor-
mation

P1 = P − a cos t̂, Q1 = Q, (51)

generated by

F2

(
Q1, ẑ, P, P̂z

)
= Q1P + ẑP̂z − aQ1 cos t̂, (52)

The Hamiltonian in terms of the new variables is

H̃ =
[
P 2 +Ω2

0Q
2 + P̂ 2

z + 1
]1/2

+ aQ sin t̂. (53)

This is still a time-dependent system with only two de-
grees of freedom. P̂z is still a constant of motion. The
equations of Hamilton read

Q̇ =
P

γ

Ṗ = −Ω
2
0Q

γ
− a sin t̂. (54)

This set of equations is similar to the one found by Kwon
and Lee to describe the motion of a particle in a constant
and homogeneous magnetic field and an oscillating electric
field of arbitrary polarization [29].

These equations of motion are solved numerically. We
have assumed that P̂z = 0 in every case. Chaos is ev-
idenced first by performing Poincaré maps. The plane
P − Q with t̂ = 0 (mod2π) is chosen to be the Poincaré
surface of section. Figure 2a shows Poincaré maps for
only one trajectory. The Lyapunov exponent for this
trajectory has also been calculated by using Benettin’s
method [9,10,20]. To do so, a very close trajectory is con-
sidered, the very small distance between the initial dis-
tance is d0. A sequence dn corresponding to these trajec-
tories is calculated numerically. For every fixed time ∆t,
or for every fixed distance ratio d/d0, dn is renormalized
to d0. The two ways to renormalize are used and com-
pared, Figure 2b shows the good agreement obtained for
the Lyapunov exponents when using the two renormaliza-
tion techniques. The fact that we have chaotic trajectories
shows that the system is not integrable.

Fig. 2. a = 4.03, Ω0 = 2. (a) Surface of section plots for
one trajectory. (b) Lyapunov exponent calculated with the
same trajectory, the two renormalization methods are com-
pared (a = 4.03, Ω0 = 2).

Performing Poincaré maps, one can check that the pri-
mary resonance (3,1) exists for all non-zero values of the
dimensionless electric field a while the secondary (3,1) res-
onance appears when a is greater that some threshold
value of a for one given value of Ω0. When Ω0 = 2 the sec-
ondary resonance is born when a is in the range 3–3.33. As
a is increased, the central island is squeezed by the hyper-
bolic fixed points of the secondary (3,1) resonance until
the fixed points are absorbed by the elliptic fixed point
of the (1,1) resonance. When a is increased, the hyper-
bolic fixed points reappear and move outward. When a is
in the range 3.38–4, the primary (3,1) resonance and the
secondary (3,1) resonance overlap, and chaotic trajectories
cover the overlapped region.
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When going back to the laboratory frame, in the case
when the index of refraction is very close to unity, per-
forming Poincaré maps and calculating Lyapunov expo-
nents evidenced chaotic trajectories.

It has been shown in this paragraph that, as soon has
the phase velocity is higher than the speed of light, chaotic
trajectories can exist due to the overlap of only two res-
onances. Then some particles can move in a larger phase
space and take more energy to the wave than in the in-
tegrable case. Still, the new space is not much larger as
we have two resonances only. The situation studied next
is more interesting as their will be an infinite number of
resonances, thus a very large space will possibly be opened
to the charged particle.

4 Dynamics of a charged particle
in two or three linearly polarized traveling
waves

In this part, the stability of a charged particle in two or
three linearly polarized waves is studied. One of the waves
is assumed to have an ultra-high intensity. The second and
third perturbing wave can represent other laser beams or
plasma waves.

When the two waves propagate in the same direc-
tion and have the same phase velocity (V = ω0/k0 =
ω1/k1), one still has Ṗz = −∂H/∂z = (1/V )dH/dt. Thus,
C = H − V Pz , is a first integral of the system, and,
consequently, the problem is integrable. When, ω0/k0 �=
ω1/k1, we have shown numerically that trajectories can
become chaotic. When the directions of propagation of
the two waves are different, the problem is not integrable.
Chaotic trajectories were also evidenced.

In this chapter, we focus on the case of waves propa-
gating in different directions and assume that the second
and third waves are perturbing transverse electromagnetic
waves or longitudinal perturbations.

4.1 All the waves are transverse

Let us consider a transverse perturbation polarized per-
pendicularly to the polarization plane of the high intensity
wave. The wave vector of the perturbing mode with vec-
tor potential A1 is assumed to be at some angle α with
respect to the wave vector of the high intensity wave, one
has

A1 = A1ey sin
(
ω1t− k1‖z − k1⊥x

)
. (55)

In the extended phase space, when using the proper time
of the particle to parametrize the motion, the Hamiltonian
of the particle can be put in the following form [22,24]

H =
1
2
mc2γ2 − 1

2m
(P + eA + eA1)

2 − 1
2
mc2, (56)

or, neglecting terms in A2
1

H = H0 +H1 = H0 − 1
m

(P + eA) · eA1, (57)

where H0 is the Hamiltonian of the system when the per-
turbation, H1, is neglected. Considering a high intensity
plane wave, we know that this problem is integrable. We
have: H0 = (1/2)mc2γ2 − (1/2m)(P + eA)2 − (1/2)mc2,
and chose: A = (E0/ω0) cos(ω0t− k0z)êx.

The dimensionless variable x̂ = k0x is added to the
dimensionless variables and parameter defined by equa-
tions (3). They are used to normalize the equations of
motion. A normalized vector potential for the perturba-
tion A1, a1 = eA1/mc = eE1/mcω1, and a normalized
proper time, τ̂ = ω0τ , are also introduced. The normal-
ized Hamiltonian is given by

Ĥ = Ĥ0 + Ĥ1,

=
1
2
γ2 − 1

2

(
P̂ + a + a1

)2

− 1
2
,

= Ĥ0 − P̂ya1, (58)

where: Ĥ0 = (1/2)γ2 − (1/2)(P̂ + a)2 − 1/2 and a1 =
a1ey sin(ω̃1t̂−k̃1‖ẑ−k̃1⊥x̂), with ω̃1 = ω1/ω0, k̃1‖ = k1‖/k0

and k̃1⊥ = k1⊥/k0. We have assumed that P̂ya1 � a2
1,

which means that we consider that P̂y ≈ 1 and a1 � 1.
First, the phase, κ = ω̃1t̂ − k̃1‖ẑ − k̂1⊥x̂, is expressed

in terms of the coordinates introduced by the canonical
transformation defined by equations (10). We have

κ = κ′ − δ sin ζ − β sin 2ζ, (59)

with

κ′ = −ω̃1φ− k̃1‖ϕ− k̃1⊥θ,

δ =
aP⊥

(
k̃1‖ − ω̃1

)
(
P‖ − E

)2 − ak̃⊥
P‖ − E

,

β =
a2
(
k̃1‖ − ω̃1

)

8
(
P‖ − E

)2 . (60)

Using the identities cos(u sin v) =
∑

n Jn(u) cos(nv) and
sin(u sin v) =

∑
m Jm(u) sin(mv), one obtains

sinκ =
∑
n,m

Jn(δ)Jm(β) sin [κ′ − (n+ 2m)ζ] . (61)

Consequently, Ĥ1 reads in terms of the new coordinates

H̃1 = −p̂ya1 sinκ

= −p̂ya1

∑
n,m

Jn(δ)Jm(β) sin [κ′ − (n+ 2m)ζ] . (62)

Then

H̃
(
P‖, P⊥, P̂y , E, θ, ϕ, φ

)
=−1

2

(
M2+P 2

‖ +P 2
⊥+P̂ 2

y −E2
)

− P̂ya1

∑
n,m

Jn(δ)Jm(β) sin [κ′ − (n+ 2m)ζ] . (63)
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The generalized Bessel function is usually defined as

Cn(δ, β) =
j=+∞∑
j=−∞

JN+2j(δ)Jj(β) is introduced [30]. Let-

ting N = (n+ 2m), one obtains

H̃1 = −P̂ya1

∑
N

VN sin (κ′ −Nζ) , (64)

with
VN (δ, β) = (−1)NC−N (δ, β). (65)

The following symmetry relation [31]

C−N (δ, β) = (−1)−NCN (δ,−β), (66)

leads to
VN (δ, β) = CN (δ,−β). (67)

The Hamiltonian can be expressed as a sum of harmonic
interactions

H̃
(
P‖, P⊥, P̂y, E, θ, ϕ, φ

)
=−1

2

(
M2+P 2

‖ +P 2
⊥+P̂ 2

y −E2
)

+ a1P̂y

∑
N

VN sin
[
k̃1‖ϕ+ k̃1⊥θ + ω̃1φ+N(ϕ+ φ)

]
.

(68)

When the zero-order solution (13) is plugged in the ar-
gument of the perturbation sines, the stationary phase
condition leads to the following resonance condition [24]

k̃1‖P‖ + k̃1⊥P⊥ − ω̃1E −N
(
E − P‖

)
= 0. (69)

This resonance condition when restricted to the en-
ergy surface equation given by the following expression:
E(P⊥, P̂y, P‖, a) =

√
M2 + P 2

⊥ + P̂ 2
y + P 2

‖ gives P⊥ ver-
sus P‖. We have plotted these resonances in the case when
P̂y = 0 in (69). Considering that P̂y �= 0 comes out to as-

suming a higher value of a, ã, given by ã =
√
a2 + 2P̂ 2

y .

When P̂y = 0, a = 1, ω̃1 = 1, k̃1‖ =
√

2/2, k̃1⊥ = ±√
2/2,

and N = −1, −2, −3, Figures 3 show P⊥ versus P‖ when
the resonance condition is satisfied, for α = π/4 and α =
3π/4. The solid lines are obtained when assuming that the
perturbation is such that k̃1⊥ =

√
2/2. The dashed lines

correspond to the situation when k̃1⊥ = −√
2/2. Figures 3

show that the lines are quite far from each other when con-
sidering one perturbing wave only. One can conclude that
a second perturbing wave is necessary so that many res-
onances overlap. As a consequence, two perturbing waves
were considered in order to define conditions when effi-
cient stochastic heating takes place. We consider that the
two wave-vectors of the perturbation are symmetric with
respect to the direction of propagation of the very intense
wave.

Figures 4 are devoted to the case when ω̃1 = 3. The
whole numerical results show that the resonance overlap
seems to be easier (as the resonances get closer to each
other) when α and ω̃1 go to higher values.

Fig. 3. Resonances in the (P‖, P⊥) plane, a = 1, |k̃1‖| =

|k̃1⊥| =
√

2/2, ω̃1 = 1. (a) α = π/4, (b) α = 3π/4.

In order to calculate the width of the Nth resonance,
following Rax [24], a resonant torus (P‖c, P⊥c, Ec) veri-
fying the resonance condition for a certain value of N is
isolated. Then, the following new variables are introduced

J =
P‖ − P‖c

k̃1‖ +N
=
P⊥ − P⊥c

k̃1⊥
=
E − Ec

ω̃1 +N
,

ψ = k̃1‖ϕ+ k̃1⊥θ + ω̃1φ+N(ϕ+ φ). (70)
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(a)

(b)

Fig. 4. Resonances in the (P‖, P⊥) plane, a = 1. |k̃1‖| =

|k̃1⊥| =
√

2/2, ω̃1 = 3. (a) α = π/4, (b) α = 3π/4.

Then, the perturbed motion is described by a one-
dimensional oscillator,

dJ

dτ
= −a1P̂yVN

(
P⊥c, P‖c, Ec

)
cosψ,

dψ

dτ
= −

[(
k̃1‖ +N

)2

+ k̃2
1⊥ − (ω̃1 +N)2

]
J. (71)

The half-width of this resonance is [6,10]

∆J = 2

√√√√√ a1

∣∣∣P̂y

∣∣∣ |VN |∣∣∣k̃2
1⊥ +

(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N

)∣∣∣ . (72)

Consequently, the half-width in terms of the action vari-
ables is given by

∆P‖ =
(
k̃1‖ +N

)
∆J,

∆P⊥ = k̃1⊥∆J. (73)

The sum of the half-widths of the two resonances N
and N ′, corresponding to modes with wave vectors k̃⊥
and −k̃⊥ is given by

∆PN⊥ +∆PN ′⊥ = 2
∣∣∣k̃1⊥
∣∣∣ (∣∣∣a1P̂y

∣∣∣)
1
2

×



∣∣∣∣∣∣

VN,k̃1⊥

k̃2
1⊥ +

(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N

)
∣∣∣∣∣∣

1
2

+

∣∣∣∣∣∣
VN ′,−k̃1⊥

k̃2
1⊥ +

(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N ′

)
∣∣∣∣∣∣

1
2

 , (74a)

and

∆PN‖ +∆PN ′‖=

∣∣∣∣∣
k̃1‖ +N

k̃1⊥

∣∣∣∣∣∆PN⊥ +

∣∣∣∣∣
k̃1‖ +N ′

k̃1⊥

∣∣∣∣∣∆PN ′⊥.

(74b)

Let us consider the overlap of resonances N = −1 cor-
responding to the two modes with wave vector compo-
nents k̃1⊥ and −k̃1⊥ when ω̃1 = 1. The quantities V−1,k⊥
and V−1,−k⊥ are evaluated by using the following Taylor
expansion relevant for small α and β [24,32,33]

C1(δ, β) =
δ

2
+
δβ

4
− δ3

16
. (75)

In the situations considered here, the results obtained
when using this expansion are in good agreement with
those obtained through a numerical evaluation of the se-
ries representation of this generalized Bessel function. The
Chirikov criterion [21] is satisfied for two resonances when
their unperturbed separatrices touch or overlap. When
they are close enough, a trajectory is no longer locked
within one of the resonances, and it can pass from one res-
onance to the other. In other words the Chirikov thresh-
old is reached when ∆P−1⊥+∆P ′

−1⊥ and ∆P−1‖+∆P ′
−1‖

are larger than the distance between the two resonances in
term of P⊥ and P‖ respectively. This comes out to verify
the two following conditions

R−1⊥ =
d−1⊥

∆P−1⊥ +∆P ′
−1⊥

≤ 1, (76a)
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Fig. 5. Normalized energy of the charged particle versus time.
P̂y = 1, ω̃1 = 3, α = π/3. (α) a = 2, a1 = 0.2, (β) the total
intensity is in one wave: a = 2.176, a1 = 0.

and

R−1‖ =
d−1‖

∆P−1‖ +∆P ′
−1‖

≤ 1. (76b)

where d−1⊥ and d−1‖ are the distance between the two res-
onances respectively along the P⊥-axis and the P‖-axis.

The values of P‖ and P⊥ which are used in our numeri-
cal estimates verify the resonance condition (69). Our nu-
merical estimates shows that there is stochastic heating
for realistic laser parameters. For instance when a = 1,
a1 = 0.1, P̂y = 1 and α = π/4, considering two reso-
nances located at P‖ = 0.4 and P⊥ = ±0.165, we have
R−1⊥ = 0.55 and R−1‖ = 0. In this case, the Chirikov
threshold is reached. Considering that a = 4, a1 = 0.3,
P̂y = 1 and α = π/3, and the same two resonances,
P‖ = 0.4 and P⊥ = ±0.231, we have R−1⊥ ≈ 0.33 and
R−1‖ = 0, which means that, in this case, the Chirikov
criterion is better satisfied. Considering a trajectory with
its initial conditions in the overlap region, the energy of
one particle in the three waves is compared to the one
when the total electromagnetic intensity is in the high in-
tensity wave. Only weak stochastic heating seems to occur
in this case.

When assuming that ω̃1 = 3, the resonance overlap
seems to be easier to achieve. Then, the most dangerous
resonance is N = −3 (Figs. 4). In order to calculate the
resonance half-widths of each resonance, the generalized
Bessel function, C3(δ, β), is estimated through its series
representation. Just like in the previous case, considering
N = −3, it can be shown that the Chirikov condition is
satisfied when

R−3⊥ =
d−3⊥

∆P−3⊥ +∆P ′
−3⊥

≤ 1, (77a)

Fig. 6. Average value of the normalized energy versus time.
P̂y = 1, ω̃1 = 3, α = π/3. (a)(α) three waves and two initial
conditions are considered: a = 2, a1 = 0.2. (β) considering the
two same initial conditions, the total intensity is assumed to
be in the high intensity wave: a = 2.176, a1 = 0. (b) a = 2,
a1 = 0.4, the same two initial conditions are considered.

and

R−3‖ =
d−3‖

∆P−3‖ +∆P ′
−3‖

≤ 1. (77b)

When a = 2, a1 = 0.2, P̂y = 1 and α = π/3, considering
P‖ = 0.4 and P⊥ = ±0.231, we have R−3⊥ = 0.54 and
R−3‖ = 0. In this case, we are well above the Chirikov
threshold for the resonance N = −3. Figure 5 shows the
evolution of the energy of one particle in the case when it
interacts with the three modes and in the case when all
the intensity is in one mode. This figure shows that there
is stochastic heating. Figure 6a shows the evolution of the
average value of the energy versus time for two distinct
initial conditions chosen in the overlap region. Because
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of stochastic heating, the average energy for each initial
condition is higher in the two chaotic cases than in the
integrable ones. In the two integrable cases the average
values of the energy remain different. The comparison be-
tween the integrable case and the chaotic one shows that
one has stochastic heating. For the same conditions but
a higher value of a1, a1 = 0.4, the two curves converge
approximately with time in the cases when three waves
are considered (Fig. 6b). This is a consequence of the fact
that the initial conditions are in a subspace that becomes
ergodic.

4.2 The perturbing wave is longitudinal

The wave vector of each longitudinal perturbing mode is
also assumed to propagate at some angle α with respect
to the wave vector of the high intensity wave.

First, only one perturbing wave is considered. In the
extended phase space, the Hamiltonian of the charged par-
ticle in the field of a high intensity wave and one low in-
tensity longitudinal mode is given by [22]

H =
1

2m

(
W

c
+ e

δφ1

c

)2

− 1
2m

(P + eA)2 − 1
2
mc2, (78)

where δφ1 = δφ1 sin(ω1t − k1⊥y − k1‖z) is the scalar po-
tential of the perturbing wave and W is the total energy
of the particle, W is given by

W =

[[
Px +

eE0

ω0
cos (ω0t− k0z)

]2
c2 +

(
P 2

y

)
c2

+
(
P 2

z

)
c2 +m2c4

]1/2

−eδφ1 sin
(
ω1t− k1‖z − k1⊥x

)
.

(79)

Neglecting terms in δφ2
1, the Hamiltonian becomes

H = H0 + γeδφ1. (80)

The wave vector A is still given by: A = (E0/ω0) cos(ω0t−
k0z)êx. H0 is the zero-order Hamiltonian and the pertur-
bation term is: H1 = γ(eδφ1/mc

2).
Once more, this Hamiltonian can be normalized. The

following Hamiltonian gives the normalized equations of
motion

Ĥ = Ĥ0 + γδ̂Ep, (81)

where δ̂Ep = eδφ1/mc
2 is the normalized potential energy.

In terms of the variables defined by (10) the perturbation
reads

Ĥ1 = δ̂Ep

[
E − P⊥a

P‖ − E
cos ζ − a2

4
(
P‖ − E

) cos 2ζ

]

×
{∑

n,m

Jn(δ)Jm(β) sin [κ′ − (n+ 2m)ζ]

}
, (82)

where δ̂Ep is the amplitude of the potential oscillation
δ̂Ep. The perturbation can be brought in the following
simple form

H̃1 = δ̂Ep

∑
h,m,n

Jn(A)Jm(B)Uh sin [κ′ − (n+ 2m+ h)ζ] ,

(83)
with

Uh = Eδ0h − P⊥a
2
(
P‖ − E

)δ1|h| − a2

8
(
P‖ − E

)δ2|h|, (84)

where the h sum is restricted to h = 0, ±1, ±2, δi
j are

the Kronecker symbols. Introducing the generalized Bessel
function, we obtain

H̃1 = −δ̂Ep

∑
N

VN (δ, β) sin
[
k̃1‖ϕ+ k̃1⊥θ

+ω̃1φ+N(ϕ+ φ)] , (85)

with
VN (δ, β) =

∑
|h|=0,1,2

UhCN−h(δ,−β), (86)

that is to say

VN (δ, β) = ECN (δ,−β)

− P⊥a
2
(
P‖ − E

) [CN+1(δ,−β) + CN−1(δ,−β)]

− a2

8
(
P‖ − E

) [CN+2(δ,−β) + CN−2(δ,−β)] . (87)

Plugging the zero-order solution (13) in the perturba-
tion leads to the resonance condition given by (69).

The Chirikov threshold criterion [21] is fulfilled for res-
onances N and N ′, corresponding to two modes with the
same wave vectors k̃⊥ when

RN,N ′
⊥ =

dN,N ′
⊥

∆P⊥ +∆P ′
⊥

≤ 1, (88)

where dN,N ′⊥ is the distance along the P⊥ axis between
the two resonances and where

∆P⊥ +∆P ′
⊥ =

2
∣∣∣k̃1⊥
∣∣∣



 δ̂Ep |VN |∣∣∣k̃2

1⊥ +
(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N

)∣∣∣




1
2

+


 δ̂Ep |VN ′ |∣∣∣k̃2

1⊥ +
(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N ′

)∣∣∣




1
2

 , (89)

and when

RN,N ′‖ =
dN,N ′‖

∆P‖ +∆P ′
‖
≤ 1, (90)
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Fig. 7. Resonances in the (P‖, P⊥) plane. a = 1, ω̃1 = 1×10−2,

α = 3π/4 and k̃1 = 1.

with

∆P‖ +∆P ′
‖ =

2
∣∣∣k̃1‖ +N

∣∣∣

 δ̂Ep |VN |∣∣∣k̃2

1⊥ +
(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N

)∣∣∣




1
2

+2
∣∣∣k̃1‖ +N ′

∣∣∣

 δ̂Ep |VN ′ |∣∣∣k̃2

1⊥ +
(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N ′

)∣∣∣




1
2

.

(91)

The resonances in the (P‖, P⊥) plane are shown in Figure 7
for one value of k̃1.

In order to compute the resonance half-width of each
resonance, (75) and the following Taylor expansions were
used [24,32,33]

C0(δ, β) = 1 − δ2

4
+
δ4

64
− β2

4
,

C2(δ, β) =
δ2

8
+
δ2β

8
− δ4

96
− β

2
,

C3(δ, β) = −δβ
4

+
δ3

48
,

C4(δ, β) =
δ4

384
− δ2β

16
+
β2

8
. (92)

In the following discussion, the results obtained when us-
ing these Taylor expansions are in good agreement with
the evaluations derived through the series representations
of these functions.

Considering two resonances N = −1 and N = −2,
when k̃1 = 1 and δ̂Ep = 0.1 (k̃1δ̂Ep = 0.1), we have as-
sumed P⊥ = 0, P‖ = 0.871 for the resonance N = −1
and P‖ = 1.327 for N = −2. The following two val-
ues RN,N ′⊥ = 0 and RN,N ′‖ = 0.37, were obtained. As
a consequence the Chirikov criterion is satisfied for these
two resonances. No strong stochastic heating was observed

when considering trajectories having their initial condi-
tions in the overlap region.

Then, in order to observe strong stochastic heating
we have considered two symmetric perturbing longitudi-
nal waves. The two electric fields of the perturbing waves
are supposed to be in the (x̂, ẑ) plane. In this case many
resonances should overlap. Let us consider the overlap of
resonances N corresponding to the two modes with wave
vector components k̃1⊥ and −k̃1⊥. The Chirikov criterion
is satisfied when

RN⊥ =
dN⊥

∆PN⊥ +∆P ′
N⊥

≤ 1, (93)

with

∆PN⊥ +∆P ′
N⊥ =

2
∣∣∣k̃1‖
∣∣∣
[∣∣∣δ̂EpVN,k1⊥

∣∣∣
1
2

+
∣∣∣δ̂EpVN,−k1⊥

∣∣∣
1
2
]

∣∣∣k̃2
1⊥ +

(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N

)∣∣∣
1
2
. (94)

and when

RN‖ =
dN‖

∆PN‖ +∆P ′
N‖

≤ 1, (95)

with

∆PN‖ +∆P ′
N‖ =

2
∣∣∣k̃1‖ +N

∣∣∣
[∣∣∣δ̂EpVN,k1⊥

∣∣∣
1
2

+
∣∣∣δ̂EpVN,−k1⊥

∣∣∣
1
2
]

∣∣∣k̃2
1⊥ +

(
k̃1‖ − ω̃1

)(
k̃1‖ + ω̃1 + 2N

)∣∣∣
1
2

. (96)

Considering two resonances N = −1 which are symmetric
with respect to the P‖-axis. Their coordinates are P‖ = 0.8
and P⊥ = ±0.124. Assuming that a = 1, ω̃1 = 1 × 10−2,
k̃1 = 1, α = 3π/4, δ̂Ep = 0.1, we found RN⊥ = 0.54
and RN‖ = 0. The Chirikov criterion is satisfied for these
two resonances. Figure 8 shows that stochastic heating
can be observed considering one trajectory with its initial
conditions between the two resonances

5 Conclusions

The stability of a charged particle in a high intensity
linearly polarized traveling wave (above 1018 W/cm2)
was investigated within the framework of a Hamiltonian
analysis.

The dynamics of one particle in a linearly polarized
traveling wave propagating in a nonmagnetized medium
was studied first. Integrability was demonstrated. It has
been shown that the charged particle can have a high av-
erage velocity along the direction of propagation of the
wave and along its electric field. These results were used
to compare this one particle model to a plasma approach.
The results obtained with the two approaches are in good
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Fig. 8. Average value of the energy of the particle versus time
a = 1, ω̃1 = 1 × 10−2, k̃1 = 1, α = 3π/4; (a) in the case of the
three waves, (b) when it interacts with the high intensity wave
only.

agreement during a very short time. Our numerical results
have shown that the plasma response has to be taken into
account after this short time. It was shown that, even
when the plasma response is taken into account, the mo-
tion of one particle of the plasma remains integrable in
the limit of low densities and/or high intensities.

The dynamics of a charged particle in a linearly polar-
ized electromagnetic wave propagating along a constant
homogeneous magnetic field was investigated next. In a
first part, the electromagnetic wave was assumed to prop-
agate in vacuum. We have shown that the synchronous
solution still exists when the wave is linearly polarized.
Two constants, which are canonically conjugate, were used
to reduce the problem to a two-degree of freedom problem.
The system was integrated and was shown to be Liouville
integrable. Then, in order to study the plasma response
in the case of a very high intensity wave propagating in a
low-density plasma, an approximate solution for an almost
transverse wave was used. It is shown that for moderate
values of the constant magnetic field one can consider that
this wave has approximately the same form as the one that
propagates in vacuum. Performing a simplifying Lorentz
transformation eliminated the space variable correspond-
ing to the direction of propagation of the wave. Just like
in the previous case, two canonically conjugate constants
were used to reduce the initially three degrees of freedom
problem to a two degrees of freedom problem. Thus, in
cases when the index of refraction is very close to unity,
performing Poincaré maps evidenced chaotic trajectories.
Lyapunov exponents were also calculated to confirm the
chaotic nature of some trajectories. Chaos appears when a
secondary resonance and a primary resonance overlap. As
a consequence the system is not integrable and chaos ap-
pears as soon as the plasma response is taken into account.

Finally, the stability of a charged particle in the fields
of several waves was explored. In this part no constant ho-
mogeneous magnetic field was considered. A high intensity
plane wave was first perturbed by one or two electromag-

netic plane waves. The effect of a perturbing plasma wave
was also studied. The solution of Hamilton-Jacobi equa-
tion derived in Section 2 was used to identify resonances.
The stochasticity threshold due to resonance overlap was
calculated. The Chirikov criterion was applied to two reso-
nances corresponding to two symmetric perturbing waves.
Stochastic heating was evidenced considering trajectories
and computing the energy or the average energy of the
charged particle.

A next step will be to consider a high intensity wave
propagating along a constant homogeneous magnetic field
perturbed by an electromagnetic wave. The conjugate ef-
fect of the magnetic field might lead to closer resonance
curves and more stochastic heating.

The authors thank Dr. Serge Bouquet for very valuable discus-
sions.

Appendix A

Let us show that the system defined by equations (25) is
Liouville integrable. To do so, let us consider the following
Hamiltonian

H =
P̄ 2

1

2
+

Ω2
0

2Ĉ2
Q2

1 −
a

Ĉ
Q1 sin ζ. (A.1)

Assuming that ζ plays the part of times, the equations of
Hamilton read

P̄ ′
1 = − ∂H

∂Q1
= −Ω

2
0

Ĉ2
Q1 +

a

Ĉ
sin ζ.

Q′
1 =

∂H
∂P̄1

= P̄1. (A.2)

Differentiating a second time the second equation, one
finds again equation (29a) for Q1. The following equation
for P̄1, is obtained

P̄ ′′
1 +

Ω2
0

Ĉ2
P̄1 =

a

Ĉ
cos ζ. (A.3)

The equation for P1 (29b) is found again by letting P̄1 =
−(P1 + a cos ζ)/Ĉ. Thus, one constant for the system de-
fined by (A.1) will provide a constant for our system.

Writing the total derivative of the Hamiltonian (A.1)
with respect to leads to

dH
dζ

+
a

Ĉ
Q1 cos ζ = 0. (A.4)

If one manages to find a function f(Q1, P̄1, ζ) such as

df(Q1, P̄1, ζ)
dζ

=
a

Ĉ
Q1 cos ζ, (A.5)

then the following quantity is a constant of motion

I = H + f(Q1, P̄1, ζ). (A.6)
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Performing two integrations by parts and using the equa-
tions of Hamilton, a function f(Q1, P̄1, ζ) was found and
the following constant of the system defined by (41) was
obtained

K =
(
Ω2

0

Ĉ2
− 1
)(

P̄ 2
1

2
+

Ω2
0

2Ĉ2
Q2

1

)

− a

Ĉ

(
Ω2

0

Ĉ2
Q1 sin ζ + P̄1 cos ζ +

a

4Ĉ
cos 2ζ

)
. (A.7)

which, in terms of variables P1, Q1 reads

K =
(
Ω2

0

Ĉ2
− 1
)[

(P1 + a cos ζ)2

2
+
Ω2

0

2
Q2

1

]

− a

[
Ω2

0

Ĉ2
Q1 sin ζ − (P1 + a cos ζ) cos ζ +

a

4
cos 2ζ

]
.

(A.8)

The fact that this quantity is a constant of motion was
verified numerically.

As a consequence, the system has two first integrals,
the one that we have just found and the Hamiltonian. This
shows again that the system is integrable.
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